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Physical and geometric determinants of transport in
fetoplacental microvascular networks
Alexander Erlich1*, Philip Pearce2*, Romina Plitman Mayo3,4,
Oliver E. Jensen1, Igor L. Chernyavsky1,5†

Across mammalian species, solute exchange takes place in complex microvascular networks. In the human
placenta, the primary exchange units are terminal villi that contain disordered networks of fetal capillaries
and are surrounded externally by maternal blood. We show how the irregular internal structure of a terminal
villus determines its exchange capacity for diverse solutes. Distilling geometric features into three parameters, ob-
tained from imageanalysis and computational fluiddynamics,we capture archetypal features of the structure-function
relationship of terminal villi using a simple algebraic approximation, revealing transitions between flow- anddiffusion-
limited transport at vessel and network levels. Our theory accommodates countercurrent effects, incorporates non-
linear blood rheology, and offers an efficient method for testing network robustness. Our results show how physical
estimates of solute transport, based on carefully defined geometrical statistics, provide a viable method for linking
placental structure and function and offer a framework for assessing transport in other microvascular systems.

INTRODUCTION
The human placenta performs diverse functions later taken on by
several different organs (1). In particular, it mediates the exchange of
vital solutes, including respiratory gases and nutrients, between the
mother and the developing fetus. The complex heterogeneous structure
of the placenta is adapted to perform these various functions. However,
despite its availability for ex vivo perfusion experiments just after birth
and the importance of placental dysfunction in conditions such as fetal
growth restriction, the link between placental structure and function in
health and disease remains poorly understood (2, 3). Multiscale models
have proved successful in investigating aspects of the structure-function
relationship in the microcirculation (4, 5), lymph nodes (6), and organs
including the brain (7–10), the kidney (11), and the liver (11, 12).
However, general methods for incorporating experimental data on
complex, heterogeneous capillary networks into these models remain
underdeveloped.

Recent advances in three-dimensional (3D) imaging have revealed
aspects of placental structure in intricate detail (Fig. 1) (13–16). Fetal
blood flows from the umbilical cord through a complex network of vessels
that are confined within multiple villous trees; the trees sit in chambers
that are perfused withmaternal blood. Much of the solute exchange be-
tween maternal and fetal blood takes place across the thin-walled pe-
ripheral branches of the trees (terminal villi), which contain the smallest
fetoplacental capillaries. Quantitative measurements have demonstrated
structural differences between healthy and pathological placentas (such
as changes in villous capillary network density) (17), but physical expla-
nations for the observed symptoms of diseases such as preeclampsia and
diabetes have so far been confined mainly to analyses of diffusive con-

ductances from2Dhistological data (17–21). Here, we establish how the
elaborate and irregular 3D organization of capillaries within the ter-
minal villi, the primary functional exchange units of the fetoplacental
circulation, contributes to solute exchange.

Tomaximize functional understanding from emerging 3D structural
data requires an integrated mix of ex vivo experiments (22, 23) and
computational modeling (14, 20, 24–28). Previous studies have demon-
strated how transport of highly diffusive solutes in capillaries with small
diffusion distances is flow limited (determined by the flow rate of fetal or
maternal blood), whereas transport of slowly diffusing solutes in capil-
laries with a thick villousmembrane is diffusion limited.While research
has begun to shed light on the relationship between these transport reg-
imes in the humanplacenta (14, 26, 29), the latest imaging data allow for
amuchmore comprehensive characterization of the dominant geometric
features andphysical processes that govern solute transport in the placental
microvasculature. Quantifying these structure-function relationships is
essential in building well-grounded multiscale models for whole-
organ function of the human placenta and other complex vascular
systems (6, 10, 12, 24, 30).

In this study, we use an integrative approach. We combine image
analysis and 3D simulations with a discrete network model and as-
ymptotic analysis to examine the dependence of solute transport on the
geometrical arrangement of capillarieswithin the terminal villi. Theprop-
erties of these functional exchange units are quantified and encapsulated
in a theory of fetoplacental transport (formulated as an algebraic relation-
ship) that links the complex 3D structure of fetal microvascular networks
to their solute exchange capacity, providing a valuable building block for
organ-level models. We test the reduced scaling relationship against
image-based computations and find that it applies both at the level of
the whole network and within individual capillaries (subject to variations
due to countercurrent effects), readily incorporating non-Newtonian
effects of whole blood. Our results suggest that an archetypal physical
scaling of fetoplacental solute transport based on geometrical statistics
provides a viable method for linking placental structure and function.
Furthermore, our developed and cross-validated framework offers signif-
icant savings in computational costs associated with image-basedmodels
of complex biological structures and could be applicable to other systems
in which transport occurs via advection and diffusion in disordered mi-
croscale networks.
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RESULTS
Theory of solute transport in fetoplacental networks
The terminal villus shown in Fig. 1C is one of four samples we analyzed,
obtained by confocal laser scanning microscopy [from (14, 25)]. Even
within a single villus, there is significant variation in capillary diameters
and exchange distances between the capillary and villous surfaces (see
fig. S1). Image segmentation (section S1) reveals the domains occupied
by blood vessels (Ωb) and villous tissue (Ωt), as well as the bounding
syncytiotrophoblast, which provides an interface Gvil with maternal
blood. For each sample, identifying likely inlet and outlet vessels, we
computed Stokes flow through the vessel network inΩb (non-Newtonian
features of blood rheology are addressed below) under an imposed
pressure drop DP to determine the network resistance R (Table 1).
Solute transport was computed using a linear advection-diffusion
equation inΩb (modifying the advection term by a factor B to account
for facilitation of solute transport by red blood cells), coupled to a dif-
fusion equation in Ωt: Solute concentrations differing by a value Dc
were prescribed on Gvil and the inlet toΩb, and the net fluxN of solute
out ofΩb was evaluated. Solute uptake by tissue is not accounted for in
this study. Full details of the simulations are provided in section S2.

For each of the four specimens (illustrated in fig. S1A), the computed
net solute flux (evaluatedusingparameter values appropriate for oxygen)
rises monotonically with the imposed pressure drop (Fig. 2A). We wish
to establish how the differing structures of each network lead to dif-
ferences in the relationship betweenN and DP. This understanding is
facilitated by identifying the relevant dimensionless parameters and
variables describing transport in this functional tissue unit (30).

Flow-limited transport arises when DP is sufficiently weak for solute
to be fully saturated in fetal blood before it leaves the vessel network. In
this case,N is determined by the flow rate through the outlet (DP/R) as
N = DcBDP/R (where B models facilitated transport). In contrast, an
upper bound on N arises when the transport is diffusion limited, with
flow being sufficiently rapid to impose the fixed concentration
difference Dc between Gvil and the boundary Gcap (the capillary endo-
thelium separating Ωb from Ωt). In this case, N = Nmax ≡ DtDcL,
where L is a length scale specific to the villus and Dt is the solute
diffusivity in tissue (3). (Lcanbe evaluated by solving Laplace’s equation
∇2c = 0 inΩt, with c = 0 on Gcap and c = Dc on Gvil, and integrating the
normal gradient of c over eitherGcap orGvil; see section S2.)We can com-
pare the diffusive capacity per unit concentration across the villous

tissue,DtL, with a dimensionally equivalentmeasure of diffusive capacity
along vessels using the dimensionless parameter

m ¼ DtL
DpLc

ð1Þ

whereDp is the solute diffusivity in blood plasma and Lc is a measure of
vessel length in the villus. Taking Lc as the total centerline length of ca-
pillaries within the network, it is notable that the ratio L/Lc shows only
modest variation between specimens (Table 1), despite significant varia-
bility in network structure (Fig. 2A, insets).

The ratio of fluxes in the diffusion- and flow-limited states defines a
dimensionless Damköhler number

Da ¼ DtLR
BDP

ð2Þ

which also has an interpretation as a ratio of a time scale for advection
within the vessel network to a diffusive time scale through the tissue.
The parameters m and Da are convenient for characterizing solute
exchange in a terminal villus (3), as illustrated for a single vessel in
section S3.
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Fig. 1. Multiscale structure of the fetoplacental vasculature. (A) Fetoplacental arterial vessels [imaged usingmicro x-ray tomography; reproducedwith permission via CC-BY
from (16)] deliver blood from the umbilicus through numerous bifurcating vessels to peripheral capillary networks [e.g., (B), imaged using confocal microscopy]. The fetoplacental
vasculature is confined within villous trees that are coated with syncytiotrophoblast and are bathed in maternal blood; capillary networks sit within terminal villi, the peripheral
branches of the trees. (C) A segmented confocal image of a terminal villus reveals the surface Gcap of fetal capillaries (yellow) and the surrounding syncytiotrophoblast (blue; Gvil)
that interfaces with maternal blood. Image processing yields capillary centerlines (red) (D), which have total length Lc. The assumed inlet and outlet vessels are indicated. Fetal
blood occupies the volume Wb confined by Gcap; villous tissue occupies the space between Gcap and Gvil.

Table 1. Geometric parameters for network specimens 1 to 4. The
viscous resistance scaled by the blood viscosity and the diffusive length
scale specific to the villus (integrated ratio of exchange area over ex-
change distance) are determined computationally (see section S2); the
total centerline length is determined through a skeletonization algorithm
of the capillary network that provides vessel centerlines.

Specimen 1 2 3 4

R/h × 107[mm−3] 7.4 3.5 27.9 28.0

L [mm] 8.2 11.4 15.4 17.9

Lc [mm] 2.2 1.8 2.2 2.3

L/Lc 3.7 6.5 7.0 7.7
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For each villus sample, we computed three geometric determinants
of transport: Lc, L, andR/h (in simulations, we used uniform blood
viscosity h = 2 × 10−3 Pa∙s; see Table 1). TheRandLvalues are larger
for specimens 3 and 4 than for specimens 1 and 2, likely because the
latter were fixed at approximately three times higher fetal perfusion
pressure (see Materials and Methods). It is notable that differences
revealed by these globalmeasures are not obviously captured by simpler
summary statistics such as average capillary radii (fig. S1).We then re-
plotted the relation between net fluxN and pressure dropDP in terms of
N/Nmax (scaling flux on the diffusion-limited upper bound) and Da−1

(the natural dimensionless proxy for DP). These variables incorporate
dependencies on thematerial parametersB,Dt, andDp, whichwe report
for different solutes in table S1. Despite substantial variation in network
structure, the data collapse appreciably (Fig. 2B), showing a common
smooth transition between flow- and diffusion-limited transport as
Da−1 increases. The large symbols in Fig. 2 show how, at a fixed phys-
iological inlet-outlet pressure drop DP = 40 Pa (section S2), geometric
differences in flow resistance between specimens lead to different
inverse Damköhler numbers Da−1 (Fig. 2B).

Extending a regression formula proposed previously (3, 26), we ap-
proximate the relationship between N and Da−1 (section S3) using

N ¼ Nmax

Dað1� e�DaÞ�1 þ Da1=3F

ð3Þ

which captures the simulated fluxes with a reasonable degree of ac-
curacy (Fig. 2B). Here, the parameterDaF ¼ m2Da=a3c, where ac≈ 5.5,
accounts for transport across concentration boundary layers within
capillaries (26). Setting this term aside for a moment, the remaining
terms provide a smooth transition between flow-limited transport (N≈
Nmax/Da when Da−1 ≪ 1) and diffusion-limited transport (N ≈ Nmax

when Da−1 ≫ 1; Fig. 2B). Despite substantial variation in network
structure, the data collapse toward a common relationship (Fig. 2B)
in the flow-limited (Da−1 ≪ 1) and diffusion-limited (Da−1 ≫ 1)
regimes while showing similar qualitative behavior in the transitional
region for Da = O(1).

This transition is illustrated on the left-hand side of the regime
diagram in Fig. 3. The symbols show how, imposing a physiological
inlet-outlet pressure drop DP = 40 Pa across all four specimens, oxygen

fluxes span the transition between flow- and diffusion-limited states.
Equation 3 suggests that, for villi and solutes having sufficiently large
m (i.e., rapid transmural diffusive transport), boundary layer effects may
emerge (26), introducing an intermediate weakly flow-limited state for
intermediate values of Da. However, our simulations demonstrate that,
for oxygen transport in the four samples investigated, m is sufficiently
small for this not to be relevant under normal conditions. Figure 3 also
shows that, between different specimens, Da spreads overmore than an
order of magnitude, for a given DP, reflecting differing flow resistances
among villi. In contrast, the ratioL/Lc and, hence, the parameter m (Eq. 1)
vary by approximately a factor of 2, as revealed by Table 1.

We can extend this analysis to a variety of small and mobile solutes
using the data in table S1, which summarizes estimated effective advec-
tion enhancement factors B, plasma diffusivitiesDp, and tissue diffusiv-
ities Dt. From these, we compute inverse Damköhler numbers relative
to the value for oxygen. Taking oxygen transport as a reference, we iden-
tify strongly diffusion-limited solutes, such asmannitol, fructose, or car-
bon monoxide (for which Da�1

rel ≫1), as well as strongly flow-limited
solutes, including certain anesthetic gases (e.g., nitrous oxide), urea,
and ethanol (for which Da�1

rel ≪1). It is noteworthy that the transport
regime in which a solute lies (see Fig. 3) is affected by the inverse
Damköhler number through the ratio B/Dt and affected by the dif-
fusive capacity ratio m through the ratioDt/Dp. As table S1 shows, for
a fixed geometry, Da has a much wider spread than m through large
variability of B, which ranges over four orders of magnitude. How-
ever, the maximum achievable flux Nmax is proportional to Dt alone,
and therefore,Nmax values for oxygen andCOare predicted to be almost
twice those of ethanol and caffeine for the same transmural concentra-
tion difference (table S1).

Network heterogeneity
To understand spatial variations in solute transfer within capillary
networks, we now focus on solute exchange at the level of individual
capillaries. For the nine longest capillaries of specimen 1 (highlighted
in Fig. 4A and labeled by j), we evaluated the scaled net uptake,
Nj=Nj

max , as a function of the pressure drop DP across the whole
network (see the log-linear plot in Fig. 4B). The scaled net uptake
exhibits heterogeneity across the sample of vessels, including non-
monotonicity in some cases. In particular, uptake in the blue capillary
surpasses its carrying capacity Nmax at intermediate DP. Conversely,

Regression Eq. 3

1

1

BA

Specimen 1

Specimen 2

Specimen 3

Specimen 4

Fig. 2. Predictions of solute flux versus transport parameters. Computational data (A) show appreciable collapse when plotted using suitable dimensionless variables
(B). (A) Computed solute flux N in four segmented villus networks (specimens 1 to 4) plotted against the pressure drop DP driving flow through each network. (B) The
same data presented in terms of the inverse Damköhler number (see Eq. 2) and solute flux scaled on each specimen’s diffusion-limited upper bound Nmax. Da

−1 is
proportional to the pressure drop driving flow through the network. Predicted fluxes for each specimen (small colored symbols) collapse toward a common relation-
ship. Dashed lines show the approximation Eq. 3 and its asymptotes. For specimen 1, the largest deviation between the approximation Eq. 3 and the computational
result is 24%. The large symbols in (A) and (B) compare fluxes in each specimen evaluated at a fixed inlet-outlet pressure drop DP = 40 Pa. We consider this value of DP
physiological as it leads to shear stresses in specimen 1 below approximately 1.2 Pa, which we identify in section S2 to be a physiological value.
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transport in the neighboring magenta and green capillaries switches
sign around the same intermediate pressure-drop regime, suggesting
a change in their role from donors of oxygen at low DP to recipients
at high DP (via a mechanism explored in Fig. 2, D and E). The inset
shows a log-log plot of the same data as a function of (Daj)−1,
highlighting a collapse of the data similarly to the whole network
(Fig. 2B), with the exception of donor capillaries for which N becomes
negative (truncated curves).

To illustrate the donor-recipientmechanism, we consider a simplified
model system in Fig. 4D. A capillary loop, embedded in a box of villous
tissue, carries solute from the inlet (top) to the outlet (bottom) capillary.
At intermediate pressure drops, a countercurrent effect extracts solute
from the outlet capillary (acting as a donor) into the inlet capillary (the
recipient). The net flux of the top and bottom capillaries as a function of
pressure drop (Fig. 4E) shows the same characteristic behavior as demon-
strated in Fig. 4B: At intermediate DP, the donor flux switches sign,
whereas the recipient surpasses its carrying capacity Nmax. At the level
of the entire loop, however, the net uptakeN neither surpasses the carry-
ing capacityNmax nor becomes negative. Similarly, the heterogeneity seen
in individual vessels of the specimen 1 capillary network (Fig. 4B) is
integrated out at the level of the entire network (Fig. 2A).

Clarification of the donor-recipient mechanism adds to our under-
standing of the contributions of individual vessels to the overall solute
transfer of the capillary network, as shown in Fig. 4C. For a low inlet-
outlet pressure drop, the network is situated in the flow-limited regime,

where practically all uptake is reduced to a narrow region near the
inlet. Among the nine colored capillaries, only the blue and red ones are
close to the inlet, adding a small contribution each. In the intermediate
regime, the donor-recipient effect peaks, favoring the blue recipient cap-
illary at the expense of the neighboring green andmagenta donors from
which solute is extracted (and, to a lesser extent, the red at the expense of
orange and black). In the diffusion-limited regime, capillaries at the pe-
riphery of the network, in proximity to a large portion of the surrounding
villous surface (particularly the red and yellow capillaries), add the
greatest contributions to transport. Figure 4C therefore illustrates how
different vessels contribute to transport as the network moves from a
flow-limited to a diffusion-limited state across Fig. 3.

The computational results underlying Figs. 2 to 4 are based on a
Newtonian transport model with uniform hematocrit, evaluated
using 3D finite-element simulations. To assess the non-Newtonian
effects of hematocrit on solute transport, we developed a discrete
network model (see section S4) that relies on the well-established
semiempirical Pries-Secomb model (31), implemented in a reduced
representation of each network in which each capillary is treated as a
discrete component (section S4). Figure 5 (A and B) compares pre-
dictions of the reduced (discrete network) model to the full [computa-
tional fluid dynamics (CFD)] model for uniform hematocrit and blood
viscosity. Although the discrete network model captures the scaling re-
lationship between the uptake fluxN and the pressure dropDP (Fig. 5C)
and shows a good overall agreement with the CFD (Fig. 5, A and B), the
discrete networkmodel overestimatesN at largeDP and underestimates
N at small DP (see Discussion for further context). Figure 5C compares
the net oxygen transfer, assuming either uniform hematocrit and blood
viscosity (hematocrit I, where H = 0.48, h = 2 × 10−3 Pa∙s, B = 141) or
spatially variable hematocrit and nonlinear Pries-Secomb blood
rheology [hematocrit II, where the effective viscosity h(H) and solute
carrying capacity B(H) vary across the network]. While the Fåhræus-
Lindqvist effect can be expected to lower the net resistance of flow
through the network, enhancing N for a given DP, the hematocrit re-
duction in smaller vessels due to plasma skimming reduces their oxygen
carrying capacity. Figure 5C shows how, for specimen 1, the two effects
are predicted to counteract, leading to modest net impact on overall
oxygen transport, supporting the use of the Newtonian model and,
furthermore, preserving the predictive power of the scaling relationship
(3) in the discrete network model. However, the impact of the solute
carrying capacity is significant (Fig. 5C): Setting B = 1 (hematocrit
III) to eliminate the effect of solute binding to hemoglobin substantially
reduces N compared with hematocrit I and hematocrit II, particularly
under flow-limited conditions.

We also used the discrete network model to probe the sensitivity of
oxygen transport to removal (or temporary blockage) of individual
vessels. We calculated distributions of network oxygen transferNwhen
individual capillaries of specimen 1 are removed from the network (ex-
cluding those very close to the inlet). Removal of a single vessel re-
duces the overall network transfer by no more than 10% (see Fig. 5D),
demonstrating the robustness of the network to the occlusion of in-
dividual capillaries.

DISCUSSION
This study demonstrates how, despite highly variable network geo-
metries, solute transfer between maternal and fetal circulations in a
terminal villus can be characterized effectively using two dimensionless
parameters (the diffusive capacity ratio m and the Damköhler number

Da = 1

D
a F

 =
 1

Da = Da
F 1/3

Diffusion-limited

Weakly 
flow- 

limited

Flow-limited

Fig. 3. A diagram summarizing transport regimes in the parameter space
spanned by m (see Eq. 1), measuring the tissue’s capacity for diffusive transport
relative to diffusion in the vessel network, and Da−1 (see Eq. 2), which is propor-
tional to flow. Contours and background color indicate the network solute flux N (see
Eq. 3), evaluated for fixedDc and Lc. The diffusion-limited regime [Da−1≫max(1,m2)], for
which N ≈ Nmax, and two flow-limited regimes are indicated. In the strongly flow-
limited state [Da−1 ≪ min(1,m−1)], flux is proportional to flow (N ≈ NmaxDa

−1),
corresponding to an asymptote shown in Fig. 2B. In the weakly flow-limited state
(m−1 ≪ Da−1 ≪ m), concentration boundary layers arise within capillaries and N ≈
NmaxDa

−1/3/m2/3. The large colored symbols correspond to those in Fig. 2, placing
oxygen transport in specimens 1 to 4 outside the weakly flow-limited regime,
spanning the interface of strongly flow- anddiffusion-limited regimes. Vertical and hor-
izontal bars outside the figure indicate the relative m and Da−1 values of a variety of
soluteswith respect to oxygenbased ondata in table S1. The upper limits of the ranges
of table S1 are shown. For instance, Da−1 of glucose is approximately 10 times higher
compared with oxygen, and m of glucose is approximately 10 times lower.
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Da; see Eqs. 1 and 2), which, in turn, depend on three geometry-
dependent dimensional quantities (the total centerline length of capil-
laries within a network Lc, the diffusive length scale L relating capillary
and villus geometry, and the network flow resistanceR). These can be
extracted from microscopy images via standard tools (finite-element
analysis and image skeletonization) and provide a computational gener-
alization for disordered tissues of the classical Krogh cylinder approach.
These variables reveal scaling relationships that hold both at the network
and capillary levels: The appropriate choices of m and Da lead to a near
collapse of transport behavior across multiple terminal villi (Fig. 2B),
as well as for individual capillaries within a villus network (Fig. 4B).
Furthermore, the algebraic approximation Eq. 3 compactly summarizes
the transport capacity of a villus. Its transparent dependence on physical
parameters gives immediate insights into the physical and geometric
determinants of solute transport, and its economy makes it attractive
as a component in future multiscale models of placental function.

The model readily describes transfer of a variety of passively
transported solutes. Varying diffusion coefficients and the binding
capacity to hemoglobin influences m and Da, revealing solutes that are
predominantly flow or diffusion limited (table S1). The wide spread of
parameter values illustrated in Fig. 3 (Da spans four orders ofmagnitude)
emphasizes how flow- and diffusion-limited transport are likely to
occur concurrently in a single villus for different solutes (29). It remains
to be seen whether the relatively modest variation in m compared to Da
(Fig. 3) for oxygen and other mobile solutes indicates a possible robust

design feature of fetoplacentalmicrovasculature, which could bemediated
in the developing placenta by the dynamic balance of angiogenesis and
vascular pruning (32).

A 1D discrete network model (Fig. 5) offers a level of detail inter-
mediate between the full 3D computational and algebraic regression
(Eq. 3) approximations, enabling the analysis of fetoplacental transport
performance at minimal computational and image processing costs.
The discrete network model matches the predictions of the computa-
tionalmodel in the physiological range of capillary pressure drops (Fig. 5,
A and B); however, it overestimates the uptake flux for fast flows (in
the diffusion-limited transport regime) because of its neglect of diffusive
shielding, i.e., spatial interaction between neighboring capillaries (e.g.,
see Fig. 4D). The diffusive shielding is captured in 3D viaL by integrat-
ing over the whole tissue domain, extending prior studies in 2D (20).
Likewise, the discrete model overestimates the network flow resistance
and, thus, underestimates the uptake flux at small pressure drops (in the
flow-limited transport regime) due to the strong (fourth-power) sen-
sitivity of resistance on capillary radii,which aremore accurately captured
by the integral resistanceR of the 3D computational model.

The present model exploits emerging anatomical data for terminal
villi but has some significant limitations.Our calculations over a discrete
vessel network using the Pries-Secombmodel (31), which characterizes
hematocrit distributions in individual cylindrical vessels, suggest that
the effect of non-Newtonian blood rheology on oxygen transport is
modest (Fig. 5C) and that the network itself is robust to occlusions of

A

C

D E

B

Fig. 4. Solute exchange heterogeneity at the level of individual capillaries. (A) The nine longest capillaries of specimen 1 are highlighted in color; the rest of the network is
shown in light blue. Arrows indicate inlet and outlet in three projections of the network. The blue capillary near the inlet neighbors the green and magenta capillaries near the
outlet; likewise, red (near inlet) neighbors orange and black (near outlet). (B) Scaled net uptake of vessel j,Nj=Nj

max, as a function of the pressure dropDP across thewhole network
exhibits nonmonotonicity in some cases, due to a donor-recipient mechanism explored in (D) and (E). The inset shows a log-log plot of the same data as a function of (Da j )−1,
highlighting a collapse of the data similarly to the whole network (Fig. 2B), with the exception of donor capillaries for which N becomes negative (truncated curves). (C) Relative
contributions of different capillaries to the net uptake of the entire network. The inlet-outlet pressure drop in the flow-limited (FL) regime is DP = 0.04 Pa, in the intermediate (IM)
regime isDP=1.26 Pa, and in the diffusion-limited (DL) regime isDP=186Pa. (D) Simplified capillary loopmodel systemof donor-recipientmechanism, froma computation in two
spatial dimensions. Red arrows illustrate directions of diffusive flux in the surrounding tissue; capillary boundaries are shown as white lines. At intermediate pressure drops, a
countercurrent effect extracts solute from the bottom capillary (acting as a donor) into the top capillary (recipient). The net fluxes of the inlet recipient and outlet donor capillaries
as a function of pressure drop (E) show the same characteristic behavior as demonstrated in (B): At intermediate pressure drops, the donor(s) switch sign, whereas the recipient
surpasses its carrying capacity Nmax, but this effect is integrated out at the level of the whole system (whole loop).
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individual vessels (Fig. 5D), whichmay occur transiently due (for ex-
ample) to red blood cells lingering at network bifurcations (33). These
predictions await confirmation through more detailed theoretical
studies that describe blood rheology in complex geometrical domains,
and suitable experimental observations. We have not accounted for
uptake of solutes by the placental tissue itself, which will be a significant
feature for solutes such as oxygen (and which could shift the transport
into amore flow-limited regime); the predicted fluxesmust therefore be
treated as upper bounds until future studies address this feature inmore
detail. We have also encountered a common problem in simulating
flows through microvascular networks, namely, in reliably identifying
inlet and outlet vessels. This choice influences vessels that may serve
as donors or recipients when countercurrent effects arise in the flow-
limited regime (Fig. 4); however, the choice has negligible impact on
net transport in the diffusion-limited regime. We have also oversim-
plified the supply of solute at the villus surface; this will be influenced
by local features of the flow of maternal blood in the intervillous space.
The model also assumes negligible interstitial flow in the villous tissue
and does not account for transport of certain solutes via paracellular
channels or energy-dependent membrane transporters (3, 23). Last, our
model does not explicitly account for nonlinear oxygen-hemoglobin
binding kinetics [the effects of which are evaluated in (26)] and the par-

ticulate nature of capillary blood flow that could result in subtle spatial
oxygen gradients [e.g., see (34) for an extensive overview]. While our
modeling framework provides a robust qualitative description of
transport in complex microvascular networks for a wide variety of so-
lutes, it requires further quantitative refinement in future studies.

A key message of this study is that, despite the significant variability
in the shapes of individual capillaries within a terminal villus, the overall
capacity of the villus to transport passive solutes can be captured using
three integrated quantities (Lc,L, andR), which, to some extent, average
out intrinsic variations. It remains to be seen to what extent local
features such as isolated “hotspots” of transfer (where well-perfused
capillaries lie very close to the villus surface, for example) might cor-
relate with features of the external maternal flow, or the distribution of
transporters in the villus membrane. These features may lead to non-
trivial coupling between fetal and maternal flow distributions (3). Once
suitable imaging data become available, it will be of particular interest to
explore both intra- and interplacental variability and to examine how
pathologies that disrupt the structure of terminal villi affect their
function.

In summary, our analysis demonstrates how a judicious choice of
dimensionless variables, incorporating relevant integral determinants
of geometric microstructure, reveals robust relationships characterizing

A

C D

B

Fig. 5. A comparison between thediscrete network versus CFDmodels of oxygen transfer in specimen1. [topology shown as an inset to (D)]. (A) Comparison of the solute
flux N versus network pressure drop DP as predicted by the computational model (section S2) and the discrete network model (section S4). (B) Same data when rescaled by
relevant values of Nmax. (C) Dependence of the discrete network-predicted oxygen net transfer rate N on hematocrit distribution. The oxygen transfer rate for varying DP for the
entire network is predicted assuming uniform hematocrit and facilitated transport (B = 141, hematocrit I, solid line), spatially variable hematocrit [B = B(H), hematocrit II, dashed
line], and uniformhematocrit butwithout facilitated transport (B= 1, hematocrit III, thin dashed line). The regression equation Eq. 3 applied to the entire discrete network is shown
as the red dashed line (see section S4). (D) Sensitivity of net oxygen flux to removal of individual vessels. The solid curves replicate those within the orange box in (C). For three
different pressure drops (DP= 50, 175, and 300 Pa), we calculated 33 values ofNwith each of the 33 black capillaries (inset) removed individually. The resulting distribution for the
nonuniform hematocrit model is shown with box plots, demonstrating that the network is robust with respect to the occlusion of individual capillaries.
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physiological function. We anticipate that the framework we propose
for assessing fetoplacental solute transport performance can usefully
be extended to other complex microvascular systems.

MATERIALS AND METHODS
The specimens were taken from two different peripherial lobules of a
normal human placenta delivered by cesarean section at term, as re-
ported previously (14). The lobules were fixed at different fetoplacental
fixation pressures [specimens 1 and 2 at 100mmHg, specimens 3 and 4
at 30 mmHg; see (14)], and the samples within each lobule were ran-
domly sampled. Full details of the image analysis, 3D flow and transport
simulations, discrete network model, and sensitivity analysis are
provided in the Supplementary Materials.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/5/4/eaav6326/DC1
Section S1. Image analysis and network statistics
Section S2. Computational model
Section S3. Transport in a single cylindrical capillary
Section S4. A discrete model for transport in a capillary network
Fig. S1. Geometric statistics for terminal villus specimens.
Fig. S2. Surfaces on which boundary conditions are imposed.
Fig. S3. Shear stress distribution in a capillary network.
Fig. S4. A schematic of a capillary network segment.
Table S1. Characteristic parameters for various passively transported solutes.
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This Supplement provides further details on the image analysis (Sec. S1), the governing equations and methodology
used in 3D computations (Sec. S2), the asymptotic model of transport in a single vessel that motivates the regression
equation (Sec. S3), the discrete network transport model (Sec. S4) and its use in assessing the impact of nonlinear
blood rheology and network heterogeneity. The associated structural datasets and computational codes are publicly
available in the Figshare repository: https://doi.org/10.6084/m9.figshare.7016303.

I

The images used here comprise four sets of smooth 3D meshes of fetal vasculature and the accompanying villous
membrane (fig. S1A), segmented from stained confocal microscopy data (Fig. 1B) as described previously [14]. Image
dimensions are approximately (250× 250× 150)µm.

The watershedding algorithm AutoSkeleton of FEI Amira™ 6.4 was used to skeletonize capillary centerlines from
3D meshes, as illustrated in Fig. 1D. Having identified branching points, each network can be represented as a graph
(for example, a 2D projection of the 37-segment graph for Specimen 1 is illustrated in the inset to Fig. 5D).

We extracted geometrical statistics for each capillary branch (capillary length, and vessel-averaged minimal distances
from centerline to capillary surface and from centerline to villous surface) using Wolfram Mathematica® 11.2. As

S1B illustrates, the vessel-averaged minimal distances across all specimens from centerline to capillary surface is
8.0µm, and from centerline to villous surface it is 17.9µm.

C

Governing equations

In simulations, we model fetal blood flow using the Stokes equations

η∇2u = ∇p, ∇ · u = 0 (S1)

Here u is the fluid velocity field, p the fluid pressure and η the dynamic viscosity of fetal blood, which is treated
as Newtonian in 3D simulations; we take η = 2 × 10−3 Pa·s (appropriate for blood with 48% hematocrit in a 20µm
vessel; see [26]). We address the effects of nonlinear blood rheology in Sec. S4 below.

The solute concentration c in blood is assumed to obey the linear advection-diffusion equation

Bu · ∇c = Dp∇2c (S2)

where Dp is the solute diffusion coefficient in plasma. The parameter B = 1 for most solutes, but for species that
bind to hemoglobin B quantifies the facilitated transport by red blood cells [21, 26]. For example, for oxygen [21, 26]

B = 1 + cmaxKkhn /ρbl ≈ 141 (S3)

mage analysis and network statisticsSection S1.

omputational modelSection S2.

fig.

https://doi.org/10.6084/m9.figshare.7016303
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A B

Specimen 1 Specimen 2

Specimen 3 Specimen 4

Specimen 3 Specimen 4

Specimen 2

cap: (8.8 ± 1.8) μm
vil: (20.9 ± 7.8) μm

cap: (8.3 ± 1.4) μm
vil: (18.5 ± 6.2) μm

cap: (8.0 ± 2.3) μm
vil: (16.8 ± 5.2) μm

cap: (7.0 ± 2.1) μm
vil: (15.2 ± 4.0) μm

F . S1. A Four segmented terminal villi, showing capillary surface

(rendered in yellow) and syncytiotrophoblast (blue). B Vessel-averaged minimal distance between centerline and Γcap, as well

as between centerline Γvil. The vessel-averaging consists of discretizing each vessel centerline into 50-100 points, calculating the
minimal distance to the respective surface (Γcap or Γvil), and taking the mean value of said minimal distances, collapsing every
vessel to a single distance value. The distributions of vessel-averaged minimal distances from centerline to capillary surface(red)
and to villous surface (blue) are shown for Specimens 1–4; each network comprises between 18 and 43 vessels. The mean and
standard deviation for capillary and villous distances of each specimen are given in the figures in the form (mean±SD)µm.Across
all specimens, the vessel-averaged minimal distances from centerline to capillary surface is 8.0µm, and from centerline to villous
surface it is 17.9µm.

where cmax is the oxygen content of fetal blood at full saturation, K is the gradient of the linearized fetal oxygen-
hemoglobin dissociation curve [26], khn is the Henry’s law coefficient and ρbl is the density of blood. In villous tissue,
solute transport is governed by the diffusion equation

Dt∇2c = 0 (S4)

where Dt is the solute diffusion coefficient in tissue. Linearity of Eqs (S2), (S4) is convenient in allowing solute fields
to be rescaled to describe transport of solutes with different concentrations.

Boundary conditions

Geometric statistics for terminal villus specimens.

The surfaces bounding the domains in which Eqs (S1), (S2), (S4) are solved are illustrated in fig. S2A,B. For the
Stokes problem Eq. (S1), blood enters through the inlet surface Γin and leaves via Γout, driven by a pressure difference
∆P imposed between inlet and outlet. A no-slip condition is imposed on the capillary surface Γcap. The boundary
conditions on the flow are therefore

p = ∆P on Γin (S5)

p = 0 on Γout (S6)

u = 0 on Γcap (S7)

Fetal blood is assumed to enter solute-free at the inlet Γin and zero diffusive solute flux is imposed at the outlet Γout.
Although it is difficult to reliably identify inlet and outlet vessels from the reconstructed geometry alone, the choice

ig
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F . S2. Surfaces on which boundary conditions are imposed. Relevant surfaces for the Stokes problem (A, see Eqs (S5)–(S7))
and additional surfaces for the advection-diffusion solute transport problem and computation of carrying capacity Nmax (B,
see Eqs (S8)–(S14)) are shown. When integrating solute transport fluxes over individual capillaries, the labelling convention
shown in C is used.

has no impact on flow resistance when there is a single inlet and outlet, nor on the maximum diffusive flux (see below)
in the diffusion-limited regime. The solute concentration and diffusive solute flux are assumed continuous across the
internal boundary Γcap. The maternal solute concentration c = cmat is imposed on the villous surface Γvil and no
diffusive flux is imposed between the inlet/outlet and the villous surface (on Γ0) to avoid artificial sharp gradients.
Together, the external boundary conditions on the solute are

c = 0 on Γin (S8)

n · ∇c = 0 on Γout, Γ0 (S9)

c = cmat on Γvil (S10)

For oxygen, we assume cmat ≈ 0.07 mol/m3 [26].

Net solute transfer

The net solute transfer rate N of the network is defined as the diffusive flux across Γvil or equivalently across Γcap.
As diffusive fluxes across Γin are very small for the parameters of interest, N is well approximated as the advective
flux leaving the flow domain capillary network

N =

¨
Γout

B cn · udA (S11)

where n is the unit outward normal to Γout. We test mass conservation by comparing the advective flux Eq. (S11)
over the capillary domain (Γout) with the diffusive flux over the villous domain (Γin and Γvil) to validate the numerical
implementation.

The maximum diffusive flux

The maximum diffusive flux (or carrying capacity) Nmax corresponds to the net solute flux arising when the flow
is sufficiently strong for the inlet condition c = 0 to apply across Γcap. It can be calculated by solving Eq. (S4) over
the villous tissue domain with boundary conditions

c = 0 on Γcap (S12)

n · ∇c = 0 on Γ0 (S13)

c = cmat on Γvil (S14)

and evaluating the diffusive flux across the capillary surface

Nmax = −
¨

Γcap

Dt n · ∇c dA (S15)
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1.2 Pa

50 μm

0.8 Pa

0.4 Pa
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A B

F . S3. Predicted shear stresses in Specimen 1 shown for an inlet-outlet
pressure drop of ∆P = 40 Pa. The highest wall shear stresses (white, around 1.2 Pa) occur where capillaries are thin and
flow speeds are greatest, e.g. at the outlet (near the outward-pointing arrow). B Average shear stresses of the nine capillaries
(inset) discussed in Fig. 4A–C in the main text.

The parameter characterizing integrated exchange area over exchange distance is then defined by

L = Nmax / (Dt cmat) (S16)

Numerical implementation

We used COMSOL Multiphysics® 5.3a to solve the coupled flow and transport problems defined above. For the
Stokes problem in Figs 4, 5A,B and S3, we used the Creeping Flow module, calculating the solution on capillary
meshes of approximately 5.6 million tetrahedral elements. To calculate the concentration field in these figures, we
used the Transport of Diluted Species module on meshes of approximately 61.6 million tetrahedral elements. To
ensure that concentration boundary layers (should they arise) and fine details of the mesh (such as local near-contact
of villous and capillary meshes) were resolved, we performed a mesh convergence analysis. For the most intricate
mesh (Specimen 3), an almost nine-fold increase from approximately 7.6 to 65.6 million tetrahedral elements changed
the net uptake flux N at ∆P = 40 Pa by less than 3%.

To calculate fluxes, we used Accurate Fluxes in COMSOL (tds.ncflux c and tds.ndflux c for advective and diffusive
fluxes, respectively) and ensured that advective fluxes integrated over closed domains match. In doing so, we evaluated
the net flux over an individual capillary i (see fig. S2C) using

Ni =

¨
Γi
out

B cn · udA−
¨

Γi
in

B cn · udA (S17)

and evaluated N i
max for an individual capillary via the diffusive flux over its capillary wall Γicap. In the case of net

flux computations over the entire network (Fig. 2 in the main text), we calculate N by integrating over the entire
villous surface to minimise error introduced by very small outlet surfaces.

The data underlying Figs 2 and 3 of the main text were produced with comparable mesh quality for all four
specimens. Stokes flow on the capillary domain was solved on meshes with between 0.3 to 1.2 million tetrahedral
elements. Transport was solved on the villous and capillary domains on meshes with between 4.1 and 22.4 million
tetrahedral elements. For Specimen 1, the comparison between the net solute transfer across the network calculated
at high resolution (61.6 million tetrahedral element mesh for transport problem, as used in Fig. 4) and low resolution
(15.0 million tetrahedral element mesh for transport problem, as used in Fig. 2) led to a maximal relative error of
5.2% at a very high pressure drop (∆P = 2725.2 Pa); at a physiological pressure drop of ∆P = 40 Pa, the relative
error was 0.6%.

ig Shear stress distribution in a capillary. A



Solute B
Dp Dt

(Darel)
−1 µrel× 10−9

[
m2/s

]
carbon monoxide (CO) ∼ 104 a 2 b ∼ 102 1

mannitol 1 0.7 c ∼
(
10−4 − 10−3

)d ∼ 10 − 102 ∼ 10−3 − 10−2

fructose 1 0.7 e ∼
(
10−4 − 10−3

)f ∼ 10 − 102 ∼ 10−3 − 10−2

glucose 1 0.7 e ∼
(
10−3 − 10−2

)f ∼ 1 − 10 ∼ 10−2 − 10−1

oxygen (O2) ≈ 140 g 2 b 1 1

carbon dioxide (CO2) ∼(1 − 10)h 1.9 b ∼ 10−2 − 10−1 1

nitrous oxide (N2O) 1 2.6 c ∼ 10−2 1

urea 1 1.4 b ∼ 10−2 1

ethanol 1 1.2 e ∼ 10−2 1

caffeine 1 0.8 c ∼ 10−2 1

Inlets, outlets and boundary surfaces

The three-dimensional mesh data of capillary and villous surfaces has a number of imperfections and imaging
artefacts that add a subjective component to the identification of boundary conditions. The Specimen 1-4 meshes
have between three and five candidate locations for inlets and outlets, and we made our choice of inlet and outlet
on a case-by-case basis: in Specimen 1, 3 and 4 we identified one likely inlet and one likely outlet per specimen,
and made slight modifications by locally adding small hemispheres to the villous surface at the discarded inlet/outlet
candidate locations. These modifications ensure that apart from at the inlet and outlet, the villous surface does not
come unnecessarily close to the capillary surface. Another imperfection of the imaging data arose due to the depth
limitations of confocal microscopy, which sometimes makes it unclear if a part of the villous surface was originally in
contact with maternal blood or resulted from an artificially cut-off internal boundary on which unphysiological oxygen
exchange could occur. In the latter case, a no-flux boundary condition is applied as appropriate (Γ0 in fig. S2). We
identified the no-flux planes vs. exchange planes according to our best judgement. Comparisons between different
choices of no-flux planes revealed differences in L of up to 12%.

Shear stress distributions

In addition to the results reported in Figs 2–4 of the main text, the computational model provides detailed maps
of predicted shear stress within capillaries (fig. S3A). For a network pressure drop ∆P of 40 Pa, the shear stress is
everywhere below a maximum of approximately 1.2 Pa; for comparison, Olesen et al. [35] estimated a physiological
shear stress range between 0.5 Pa to 2 Pa in arterioles of comparable diameter to those encountered here. The shear
stress at any location within the network is linearly proportional to ∆P under a Newtonian Stokes flow approximation,
suggesting that an increase of ∆P to around 100 Pa remains within a physiological range. Regions of locally elevated
shear stress are found at constrictions and in vessels carrying greater flow, for example near the inlet or outlet. The
variation in average shear stress between vessels (fig. S3B) was notable, indicating local variations in flow resistance.
However, these results depend on the specimen fixation pressure and the choice of flow rheology model (see Sec. S4
below and Figs 4 and 5 in the main text.).

Model parameters for passively transported solutes

The developed framework readily extends to a variety of relatively small and mobile solutes. Table S1 summarises
and estimates key transport parameters, specifically effective advection-enhancement factors B, plasma Dp and tissue
Dt diffusivities, as well Damköhler and diffusive capacity numbers (Darel and µrel) relative to oxygen values.

T S1. Characteristic parameters for various passively transported solutes. The constant B describes the solute carrying
capacity by the red blood cells. The solute diffusivities in blood plasma and in villous tissue (where the solute is
dissolved in water) areDp andDt respectively. The Damköhler and diffusive capacity numbers relative to oxygen values are
Darel ≡ Dsolute

t Boxygen/(Doxygen
t Bsolute) andµrel ≡ Dsolute

t /Dsolute
p respectively. Data are taken(with mostDpvalues given in

literature at 25℃) or estimated from a[29, 36], b[37], c[38]. d[39], e[40, 41], f [42–44],g[26], h[45].
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F . S4. A schematic of a capillary network segment. A capillary is represented in the discrete network model by a cylinder with

Poiseuille flow and a surrounding cylindrical shell representing the villous domain. The boundary surfaces are labeled in the
convention of fig. S2.

T

We now motivate the form of the regression equation, Eq. (3) in the main text, by analysing transport in a single
capillary. We assume axisymmetry, denoting parameters in this special case with a circle superscript.

Consider a cylindrical feto-placental capillary of length L and radius R within an annular villous volume of thickness
d (fig. S4). In cylindrical coordinates, the flow problem Eq. (S1), (S5)–(S7) has the familiar Poiseuille solution for
the axial velocity

u (r) = umax

(
1− r2

R2

)
, umax =

∆PR2

4ηL
(S18)

The cross-sectionally averaged velocity is 〈u〉 = 1
A

˜
udA = umax/2, where A is the cross-section area. The volume

flux q =
˜
udA is related to the pressure drop ∆P across the capillary via ∆P = R◦q with the Poiseuille resistance

R◦ =
8ηL

πR4
(S19)

The advection-diffusion problem given by Eqs (S2), (S8)–(S10) becomes

Bu
∂c

∂z
= Dp

[
1

r

∂

∂r

(
r
∂c

∂r

)
+
∂2c

∂z2

]
(S20)

0 = Dt

[
1

r

∂

∂r

(
r
∂ct
∂r

)
+
∂2ct
∂z2

]
(S21)

Here we use ct to denote the solute concentration in villous tissue. The boundary conditions are

c = 0 at z = 0 (S22)

∂c

∂z
= 0 at z = L (S23)

ct = cmat at r = R+ d (S24)

Dp
∂c

∂r
= Dt

∂ct
∂r

at r = R (S25)

c = ct at r = R (S26)

∂c

∂r
= 0 at r = 0 (S27)

Neglecting axial diffusion in Eq. (S21), we can obtain an explicit solution for ct in terms of c, allowing us to write
the full problem in terms of the capillary concentration c only. The Neumann condition Eq. becomes a Robin
condition

∂c

∂r
= µ◦

(
cmat − c

R

)
at r = R (S28)

with the diffusive capacity

µ◦ =
Dt/Dp

log(1 + d/R)
(S29)

ig

ransport in a single cylindrical capillarySection S3.

(S25)



Setting c = 0 in Eq. (S28) and integrating the diffusive flux over Γcap, it follows that N◦max = 2πDt cmat L/ log(1+d/R).

Asymptotic approximation

Introducing the non-dimensional variables

Π =
BRumax√
µ◦Dp

, α =
L

R
, r̂ =

r

R
, ẑ =

z

R
, ĉ =

c

cmat
(S30)

the problem is specified in terms of µ◦, a modified Péclet number Π and the tube aspect ratio α as

Π
√
µ0

(
1− r̂2

) ∂ĉ
∂ẑ

=
1

r̂

∂

∂r̂

(
r̂
∂ĉ

∂r̂

)
+
∂2ĉ

∂ẑ2
(S31)

with boundary conditions

ĉ = 0 at ẑ = 0 (S32)

∂ĉ

∂r̂
= 0 at r̂ = 0 (S33)

∂ĉ

∂ẑ
= 0 at ẑ = α (S34)

∂ĉ

∂r̂
= µ◦(1− ĉ) at r̂ = 1 (S35)

We now demonstrate how diffusion-limited and strongly or weakly flow-limited regimes can be obtained from this
boundary-value problem.

When the diffusive capacity is low (µ◦ � 1), radial diffusion over a long domain suppresses transverse concentration
gradients. Following [46], we scale the axial coordinate by

√
µ◦ and approximate the concentration profile as well-

mixed, using

ẑ =
z
√
µ◦
, ĉ = ĉ0 (z) + µ◦ĉ1 (z, r̂) +O

(
µ2
◦
)

(S36)

The non-dimensional problem Eq. (S31) then becomes

Π
(
1− r̂2

) ∂ĉ0
∂z

=
1

r̂

∂

∂r̂

(
r̂
∂ĉ1
∂r̂

)
+
∂2ĉ0

∂z2 (S37)

Integrating Eq. (S37) over the cross-section and imposing boundary conditions we obtain the ordinary differential
equation

Π

4
ĉ′0 (z) = 1

2 ĉ
′′
0 (z) + 1− ĉ0 (z) , ĉ0 (0) = 0, c′0 (α) = 0 (S38)

where α =
√
µ◦α. The solution ĉ0 to this boundary value problem can be integrated as N ∝ µ◦

(´ α
ẑ=0

ĉ0dẑ − α
)

to
find the net uptake. When axial diffusion is weak (Π� 1), we find

N ≈ NFL-DL ≡ N◦max Da−1
◦

(
1− e−Da◦

)
(S39)

where the relevant inverse Damkhler number is

Da−1
◦ =

Dt

Dp

Π

4
√
µ◦α

(S40)

Eq. (S39) encompasses the strongly flow-limited regime N ≈ N◦maxDa−1
◦ when Da◦ � 1 and the diffusion-limited

regime N ≈ N◦max when Da◦ � 1.

In the strongly flow-limited regime, the assumption of a nearly flat concentration profile Eq. (S36) is no longer viable,
as concentration boundary layers form in a corner region near the inlet of the tube. Instead the Lévêque approximation



must be employed, which requires a transformation into the boundary layer coordinate system [37, 46]. This allows
us to recover the weakly flow-limited regime

NWFL = N◦maxαcDa−1/3
◦ µ

−2/3
◦ (S41)

where αc ≈ 5.5. An approximation for N across all physical regimes can then be obtained from a harmonic mean of
NFL-DL and NWFL

N−1 = N−1
FL-DL +N−1

WFL (S42)

This predicts N in terms of the geometric parameters R, d and L, the material parameters η, B, Dp and Dt, the
imposed pressure drop ∆P and the concentration difference cmat. The empirical regression equation Eq. (3) in the
main text, generalizes this approach to the whole network.

In order to explore the effect of hematocrit on solute transport in feto-placental capillary networks, and to test
the system for sensitivity to occlusion of single vessels, we develop a discrete network model that resolves individual
capillaries as elements of a graph. We approximate solute transport by adapting the modified Krogh cylinder for-
mulation in Sec. S3 above, ensuring conservation of fluid and solute at all nodes in the capillary network. We test
the reduction from a continuous formulation using partial differential equations (Sec. S2) to a discrete (algebraic)
representation before using the simplified model to evaluate the distribution of hematocrit in the network, calculated
using the empirical law for plasma skimming from [31]. The distribution of hematocrit is used to calculate the effective
viscosity in each vessel due to the F̊ahræus–Lindqvist effect. We also test the sensitivity of the network to blockage
of individual vessels.

The capillary network as a directed graph

Our low-order model for transport in a capillary network adapts and expands Strang’s treatment of electrical
circuits [47]. Consider a network having m segments (capillaries), each with an assigned orientation, and n nodes. To
describe the relationship between nodal and segmental quantities, we introduce the m × n incidence matrix A. Its
entries Aij are either +1, 0 or −1, where 0 means that an edge and a node are not incident, +1 means that a directed
edge points towards the node, −1 means that the edge points away from the node. It is helpful to introduce the
downstream incidence matrix A+ (in which all negative entries of A have been set to zero) and the upstream incidence
matrix A− (in which all positive entries of A have been set to zero) such that A = A−+A+. Over all the segments we
define a vector of scalar fluxes q = (q1, . . . , qm)T , where qi > 0 indicates that the flow direction in segment i matches
the orientation of the segment i. Over the nodes we define vectors of scalar pressures p = (p1, . . . , pn)T and inlet
concentrations c = (c1, . . . , cn)T . Ap is then a vector of pressure differences, defined over directed segments.
Writing B = diag (B1, . . . , Bm) as a diagonal matrix of advection boost coefficients and Q = diag (q1, . . . , qm) as a
diagonal matrix of fluxes, we introduce the m-dimensional vector of advective fluxes over segments

na = −BQA−c (S43)

Defining transmural fluxes Ni for i = 1, . . . ,m using the single tube results Eq. (S42) (in terms of three geometric
parameters for each vessel and the pressure drop across it), we construct the diagonal matrix N = diag (N1, . . . , Nm).
Rescaling the fluxes to the relevant local concentrations, the m-dimensional vector of transmural diffusive fluxes is
then

nd = N
(
1 + c−1

matA−c
)

(S44)

where 1 = (1, . . . , 1)T is an m-dimensional vector.

The discrete flow and transport problem over the network can then be written compactly as

volume flux conservation ATq = fext (S45)

flow resistance Ap− Rq = 0 (S46)

advection-diffusion transport ATna + AT+n
d = gext (S47)

Section S4. A discrete model for transport in a capillary network



Here fext = (−Qext, 0, . . . , 0, Qext) is an n-dimensional vector having first and last entries accounting for the scalar
volume flux Qext entering and leaving the system. The system Eq. (S45) of n linear equations enforces conservation
of volume flux at every node, which is coupled to the m-dimensional linear system Eq. (S46) describing Poiseuille’s
Law ∆P = R◦q for the network; here R = diag(R◦1, . . . ,R◦m). Finally, the m-dimensional linear system Eq. (S47)
describes the transport, i.e. the balance of advective and diffusive fluxes. In total there are n+ 2m linear equations
for the unknowns p, q and c. Boundary conditions can be imposed through the n-dimensional vectors fext, gext. A
key assumption of the model is that concentration is fully mixed (i.e. has a radially independent profile) at every
node.

In Fig. 5C of the main text, we compare the computational results of the discrete network model with the regression
Eq. (3) applied to the whole network, which depends on the maximum achievable uptake flux Nmax and flow resistance
R of the discrete network. These quantities were computed directly from the discrete model (parameterized directly
by the vessel-averaged statistics, fig. S1, rather than computational fluid dynamics results). We estimate R by
calculating the flow rate at the inlet segment of the discrete network (which is equal to the flow rate at the outlet
segment) and dividing by the applied inlet-outlet pressure drop. To compute Nmax, we apply a sufficiently high
inlet-outlet pressure drop ∆P such that further increase in ∆P does not change the net uptake N by more than
0.01%, which is then used as the discrete network’s Nmax.

Hematocrit and nonlinear rheology

Having established that the discrete network model provides a reliable representation of transport at the level of
individual vessels (Fig. 5A,B), we now use it to explore the impact of nonlinear blood rheology on solute transport.
This model accounts for plasma skimming, the F̊ahræus effect and the F̊ahræus–Lindqvist effect; to incorporate
facilitated transport, we use a linearized oxygen-hemoglobin dissociation curve [21, 26].

The distribution of hematocrit in the network is calculated using the empirical law for plasma skimming from [31].
The fraction of hematocrit FQE entering a vessel at a bifurcation is found in terms of the fraction of blood flow FQB
entering that vessel using

logit FQE = C1 + C2 logit

(
FQB −X0

1− 2X0

)
(S48)

where logit x ≡ ln (x/ (1− x)) and the parameter X0 defines the minimal fractional blood flow required to draw red
blood cells into the branch. The constants in Eq. (S48) are given by

C1 = −6.96 ln

(
R1

R2

)
/ (2RF ) , C2 = 1 + 6.98

(
1−HF

2RF

)
, X0 =

0.4

2RF
(S49)

where HF and RF are the hematocrit and the radius of the feeding vessel, R1 is the radius of the vessel being
considered and R2 is the radius of the other vessel in the bifurcation (radii are measured in µm).

The distribution of hematocrit H is used to calculate the effective viscosity η in each vessel due to the F̊ahræus–
Lindqvist effect according to

η /ηp = 1 +
eHβ − 1

e0.45β − 1

(
110e−2.848R + 3− 3.45e−0.07R

)
(S50)

where β = 4/ (1 + exp (−0.0593 (2R− 6.74))) and ηp = 10−3 Pa·s is the viscosity of plasma (η ≈ 2ηp in a vessel
of radius R = 10µm for H = 0.48) [31]. The two steps above are implemented in the discrete model and iterated
using a custom MathWorks MATLAB® R2016a code until the solution no longer changes, typically after less than
50 iterations. The MATLAB code was coupled with Wolfram Mathematica® 11.2 via the MATLink 1.1 package.
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