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Abstract

The placenta is a vital interface between the mother and her
developing fetus. Micro-haemodynamics of the placenta, where
the particulate nature of blood flow cannot be ignored, mediates
the relationship between the organ’s structure and its function.
However, the placenta’s complex architecture and its relation to
pregnancy pathologies remain poorly understood. This review
covers current challenges in characterising placental micro-
haemodynamics. Recent progress in three-dimensional multi-
scale imaging has stimulated the development of image-based
theoretical models, but existing approaches do not fully harness
the available data, and new tools are needed for the assimila-
tion of complex imaging datasets. Although the placenta at term
is available for in vivo imaging or ex vivo experimentation,
insight into placental micro-rheology is limited, necessitating the
use of biomimetic models. Microfluidic approaches offer op-
portunities for well-controlled characterisation of micro-rheology
in complex geometries, but challenges remain in the robust
fabrication of these systems. Recent advances in high-
performance simulations for suspension flows enable para-
metrisation of key physical processes at the micro-scale. Future
progress can be made by optimising computational architecture
and integrating micro-haemodynamics with solute transport.
Both experimental and computational approaches require
translation to the organ scale. New upscaling approaches will
need to accommodate non-local interactions in microvascular
network flows and address the lack of clear scale separation
across the placental architecture. Together, recent advances in
cross-disciplinary imaging and modelling over the last ten years
have opened a pathway for an in silico human placenta,
accelerating the development of precision obstetrics medicine
in the next decade.
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Micro-haemodynamics in normal and
complicated pregnancy

The healthy development of a fetus critically depends
on the maternal—fetal interface provided by the human
placenta [3]. During gestation, the placenta rapidly
develops into a densely packed solute-exchange system
with a large surface-area-to-volume ratio [4] (Figure 1).
The maternal uterine circulation delivers nutrients and
removes waste products via a heterogeneous porous
placental space (also known as the mtervillous space, IVS;
Figure 2a) interfaced with the feto-placental vascular
tree (Figure 1a,b), which is itself linked to the fetus via
the umbilical cord.

Maternal and fetal components of the human placenta
need to work synergistically to balance its multiple
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Figure 1
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WORKFLOW FOR BIOMIMETIC MODELLING OF THE MICRO-HAEMODYNAMICS IN THE HUMAN PLACENTA. Dark blue bubbles refer to experimental methods and light blue
bubbles refer to theoretical methods. (a) Whole-organ synchrotron micro-CT showing the fetal placental vasculature (scale bar: 25 mm; reproduced from
Ref. [1]). (b) Segmented feto-placental vascular network from synchrotron micro-CT image (scale bar: 500 um; reproduced from Ref. [1]). (c)

Computational simulation of red blood cells flowing through realistic microvascular networks (scale bar: 100 um; reproduced from Ref. [2]). All images
reproduced under CC BY 4.0. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

functions, such as the robust exchange of a diverse range of
solutes. In particular, the transport of oxygen and carbon
dioxide is strongly facilitated by the haemoglobin of the
red blood cells (RBCs) and thus depends on adequate
distribution of local faemarocrit (the volume fraction of
RBCs) [5]. Micro-haemodynamics of the placenta, where
the particulate nature of blood flow cannot be ignored
(Figure 1¢), mediates the relationship between the organ’s
structure and its function. However, the role of placental
architecture in pregnancy pathologies remains poorly un-
derstood, and multiple biological factors, such as oxida-
tive- and mechanical-stress-induced damage [6], are
associated with inadequate micro-haemodynamics.

Pathologies of the human placenta and the role of
micro-rheology

Many pregnancy complications are associated with
impaired placental micro-haemodynamics and associ-
ated pathophysiology [3,6—8]. In normal pregnancy, the
shear stress at the materno-placental interface

< 1 Pa [4],
which illustrates that in the healthy placenta, the
materno-placental IVS pore space operates as a low-
resistance and low-pressure flow system [3]. The
endothelium in feto-placental villous capillaries is
predicted to face shear stresses of a similar order of
magnitude [5]. Notably, both placental interfaces are
characterised by considerable spatial heterogeneity
[4,5]. Pre-eclampsia and fetal growth restriction (FGR),
highly prevalent pregnancy disorders, are often accom-
panied by elevated blood pressure and flow velocities in
the materno-placental IVS [3,9]. On the other hand, the
feto-placental tree and corresponding vascular network
are often smaller, with less developed branching struc-
ture, in severe FGR and pre-eclampsia than in normal
pregnancy, therefore increasing the resistance to fetal
blood flow [6]. Both structural alterations result in an
environment of high mechanical stress that increases
the chance of RBC /ysis (disintegration, associated with
the release of toxic cell-free haemoglobin [8,10]) and

(trophoblast syncytium) is estimated to be <
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Figure 2

Micro-haemodynamics of the human placenta Zhou et al. 3

LS147T

1.63 118.80 1.22 41.83

maternal flow velocity (um s71)  mean vessel radius (um)

)

3

172

12

<
23

3 Boundary

% conditions for:

Q@ ® pial arterioles
0 and venules

® capillaries

Current Opinion in Biomedical Engineering

ASSIMILATION OF COMPLEX BIOLOGICAL GEOMETRIES INTO COMPUTATIONAL MODELS. (@) Three-dimensional flow through the maternal intervillous porous space (IVS;
left) embedded in the fetal vascular network (right) of human placental tissue (reproduced from Ref. [1]). (b) Image segmentation (top) and intravascular
pressure analysis (bottom) of human colorectal carcinoma xenograft (reproduced from Ref. [22]). (c¢) Hierarchical boundary conditions applied to the
microvascular networks of mouse parietal cerebral cortex (reproduced from Ref. [23]). All images reproduced under CC BY 4.0.

damage to the endothelial or syncytial trophoblast
cellular linings in FGR placentas (as observed in other
micro-haemodynamical systems [11]).

In normal pregnancy, the growing demand of the fetus
has to be balanced with maternal circulatory capacity
and protection against adverse haemodynamical events
for the mother and her placenta. While the production of
maternal RBCs is increased during gestation, the
maternal haematocrit and overall haemoglobin content
per blood volume are reduced [8,12]. At the same time,
the volume of each RBC and its haemoglobin content
are slightly elevated, resulting in a more spherical shape.
This makes maternal RBCs potentially more susceptible
to osmotic stress damage, further evidenced by micro-
eytosis (reduced RBC volume and haemoglobin content)
in pre-eclampsia as a potential adaptive response [8].
Similarly, reduced placental oxygen supply at abnormally
low maternal haematocrit and/or haemoglobin levels,
such as in the case of maternal anaemia (iron deficiency),
could be partly compensated by placental hypertrophy
and increased feto-placental vascularisation [12].

A related set of conditions known as /faemoglobinopathies,
for example, sickle-cell disease, also strongly impact the
micro-rheology of the placental blood flow. The altered
shape and mechanical properties of RBCs increase the
incidence of IVS occlusions, haemolysis, hypoxia and
associated pathophysiology [13].

The structure of placenta in diabetic patients (including
gestational, Type I and Type II diabetes mellitus) can
often be altered in a way that is radically different from

pre-eclampsia, while still leading to FGR. In particular, the
materno-placental IVS is less sparse in diabetes than in
normal (and much less than in pre-eclamptic) placental
tissue, while the feto-placental network is less mature but
more hyper-vascularised at the exchange interface [7].
Future studies should further evaluate the relative con-
tributions of altered placental micro-architecture, RBC
shape and mechanical properties to the pathophysiology
of placental haemodynamics and solute transport.

The need for biomimetic in vitro and in silico models
To facilitate early diagnosis of developing placental
dysfunction during pregnancy, a mechanistic under-
standing of the relationship between placental structure
and function is required, which is mediated by micro-
haemodynamics at the intricate maternal—fetal interface
[14]. Despite recent progress in advanced three-dimen-
sional (3D) microscopy of placental architecture (Figure
1b), current clinical # vivo imaging and physiological ex
vivo perfusion experiments lack the resolution needed for
functional assessment of the placental micro-haecmody-
namical environment [15]. The high evolutionary diver-
gence of placental anatomy and physiology makes
common animal models (e.g, mouse, rat and sheep)
unsuitable for reliable inferences about the human
placenta [16], and the use of non-human primates is
largely inaccessible due to ethical and cost consider-
ations. However, emerging rich imaging datasets pave the
way to advanced biomimetic modelling, either  vitro or
in silico, which allows for exhaustive testing of hypotheses
regarding the interplay of placental microstructure and
micro-haemodynamics [15].
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Assimilating complex heterogeneous
geometries into models

To develop biomimetic models of placental micro-
haemodynamics, we must first establish robust and
efficient workflows to register and characterise repre-
sentative tissue geometries.

Robust segmentation and characterisation of micro-
geometry for image-based modelling

The human placenta presents a unique challenge as a
highly heterogeneous and dynamic organ, requiring
massively multiscale and multi-modal imaging to quan-
tify its function [17,18]. Additionally, the feto-placental
vascular space, materno-placental IVS and the villous
tissue barrier comprise three distinct domains which
must be distinguished within imaging modalities for
accurate reconstruction of placental micro-architecture.
Progress has been made recently using ex vioo synchro-
tron X-ray tomography with novel contrast agents or
vivo MRI techniques, in combination with machine-
learning-based segmentation algorithms, such as U-net
[1,19]. Multiple challenges, however, remain in the
robust preparation of samples that preserve their 3D
morphology and in quality-assured and efficient struc-
tural image analysis that accurately captures geometri-
cally complex maternal and fetal placental domains.

Box 1. Key challenges in placental micro-haemodynamics.

maternal and fetal placental domains [1]. Future prog-
ress in computational modelling and biomimetic
microfluidics will be enabled by generating more accu-
rate synthetic porous media and vascular networks that
match statistically the placental geometry.

Tackling boundary condition uncertainty in micro-
haemodynamical models

Even with the accurate characterisation of the placental
microstructure, micro-haemodynamical models depend
strongly on tissue-scale boundary conditions, which are
often uncertain. Furthermore, the two principal circula-
tory domains in the human placenta, the maternal IVS
and the fetal villous capillary networks, require different
modelling approaches. For the former, blood flow in a
heterogeneous IVS can be modelled by assuming a tissue-
scale pressure gradient [1] (Figure 2a). For the latter,
boundary conditions at network inlets and outlets need
to be prescribed iteratively to match physiological ranges
for blood pressure, haematocrit and wall shear stress,
borrowing modelling approaches from other biological
networks, such as vascular tumours [22] and cerebral
cortex [23] (Figure 2b,c).

In both domains, the model boundary conditions and
physiological target ranges rely on i vivo or ex vivo mea-

e Microstructure: Robust and efficient experimental and computational pipelines are needed for sample preparation, imaging, segmentation and

statistical characterisation.

e Boundaries: Physiological boundary conditions must be extracted at the tissue level, accounting for RBC—RBC and RBC-surface (in

particular, the syncytial microvillous surface) interactions.

e Microfluidics: New experimental methods are needed for the micro-fabrication of biomimetic capsules and complex three-dimensional micro-

architectures.

e Simulations: Cell-scale flow and transport simulators must be integrated and optimised, with respect to spatio-temporal decomposition and

hybrid GPU/CPU parallelisation.

e Reduced-order modelling: New mathematical models are needed for nonlinear and non-local transport in disordered networks and porous

media.

e Clinical imaging: Tissue-scale haemodynamics must be linked to MRI and Doppler ultrasound physics, accounting for local haematocrit

heterogeneities.

o Artificial placenta: Design of robust low flow-resistance and high flux oxygenators needs to be optimised with the help of biomimetic models.

Characterisation of placental microstructure, once ob-
tained, is another challenge shared with other complex
heterogeneous disordered media. A combination of to-
pological data analysis, spatial probability and statistical
physics approaches enables increasingly deep insights
into the role of microstructural fluctuations for flow and
transport in disordered porous media [20] or networks
[21]. Nevertheless, much remains unknown about
robust and optimal strategies for identifying represen-
tative volumes of placental tissue, given its heteroge-
neity and markedly different spatial scales of the

surements, with their associated uncertainties, arising
from individual and regional variability due to the
inherent heterogeneity of placental microstructure and
the resolution limit of measurement protocols [15,24].
Coupling the two circulatory domains across a complex
placental barrier also presents many open challenges. In
particular, future models will need to address capillary-
and pore-scale boundary conditions due to passive,
facilitated and active transport of solutes at the villous
syncytial and endothelial sides of the barrier, which are
likely to be spatially varying and solute-specific [4].
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Biomimetic in vitro and in silico models of
the placental microcirculations

Placental haemodynamics shares important features with
circulation in other microvascular networks [25]. Because
placental capillaries and pores are of similar size to indi-
vidual RBCs, cell-scale blood flow needs to be resolved
for a haemodynamical model to account for microcircu-
latory phenomena, such as geometry-induced haema-
tocrit bias and oxygenation heterogeneity [26]. Placental
haemodynamics is akin to a suspension flow in a porous
medium (i.e., the flow of a heterogeneous mixture of
RBCs and other blood constituents), an emerging
research topic with many open fundamental questions.
On the other hand, there is growing interest in bio-
mimetic micro-engineered ‘placenta-on-a-chip’ systems
that could provide more accurate placental drug transport
and toxicology models [16] (Figure 3a). However, there is
a paucity of m vitro and in silico studies of cellular blood
flow in placenta-specific geometries [4,14].

Figure 3

Micro-haemodynamics of the human placenta Zhou et al. 5

Experimental microfluidics of suspension flow in
complex geometries

Multiple research fields can inform micro-scale blood
flow in the human placenta. Other microvascular sys-
tems, such as lung capillary networks [29], share common
micro-haemodynamical phenomena [25,30]. Microfluidic
sorting devices [32] use complex geometries to direct the
flow of cells and particles. Two-phase flows in porous
media in the oil-recovery context, while often relating to
imbibition/drainage problems, also include emulsion
flows [33]. Pore-scale models motivated by subsurface
flow problems address the influence of pore-scale ge-
ometry on macro-scale flow parameters [34].

There are two experimental avenues for the explora-
tion of haemodynamics in complex geometries like
the placenta. Firstly, whole blood or diluted RBC sus-
pensions can be transported through biomimetic
porous-medium-like [29] or capillary-network-based
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BIOMIMETIC EXPERIMENTAL MICROFLUIDICS AND ITS APPLICATIONS. (@) A ‘placenta-on-a-chip’ micro-engineered device for placental transfer analysis (reproduced
from Ref. [27], CC BY 4.0). (b) Time-lapse image of an alginate capsule deforming at a T-junction (reproduced from Ref. [28], with the permission of
Cambridge University Press). (¢) A microfluidic model of blood flow in a regular porous medium, with one labelled deformed RBC (red) and marked
posts (red circles; adapted from Ref. [29], with the permission of AIP publishing). (d) A microfluidic model of blood flow in a biomimetic capillary network
(reproduced from Ref. [30], with the permission of AIP publishing). (e) Prototype neonatal life-support ‘artificial placenta’ device (reproduced from

Ref. [31], with the permission of AIP publishing). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web

version of this article.)
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[30] artificial structures, thus enabling measurements
under well-controlled flow conditions (Figure 3c,d).
These measurements have the advantage of retaining
biological features related to RBC variability and
interaction, but flow conditions need to be carefully
monitored to keep the RBCs in a physiological state.
Secondly, control over particle properties in addition to
flow conditions requires RBC analogues. This approach
can reveal the underlying physics of the suspension
flow but largely bypasses biological effects. The main
challenge is to create physical objects which have bio-
mimetic properties that closely reproduce the me-
chanics of RBCs in suspension. Potential candidates are
elastic beads [35], droplets, vesicles and capsules [36].
While elastic beads offer limited deformability under
laboratory flow conditions, droplets and vesicles can
exhibit large deformations, but they lack the RBCs’
shear elasticity. Liquid droplets encapsulated by an
elastic membrane offer the closest analogue to RBCs,
but properties like membrane thickness, material
properties and inflation need to be finely tuned to
access the deformations observed in RBCs (Figure 3b).

The micro-fabrication of complex porous media pre-
sents additional challenges. In microfluidics, poly-
dimethylsiloxane (PDMS) is widely used for moulding
complex geometries from negatives created by photoli-
thography or micro-milling [37]. These techniques can
produce versatile planar and layered geometries but are
less suitable for 3D placental geometries. Future pros-
pects of rapid prototyping of 3D architectures are pro-
vided by advances in 3D printing technology [38].

Computational models of micro-haemodynamics
Cell-resolved computational models of microscopic
blood flow in sparse and complex geometries [2,39,40]
have recently provided access to high-resolution flow
features (e.g., local shear stresses and pressure gradients
in microvasculature), which are very difficult to measure
reliably in conventional experiments. These computa-
tional models are readily translatable to human placental
micro-haemodynamics. Such models rely on efficient
spatial and temporal decomposition of complex domains
into subsystems for parallel computing and have
achieved physiological haematocrit levels (40—60%
[39,40]) in large-scale microvasculature, capturing key
RBC features, such as cell deformation and dynamics.

Nevertheless, the uncertainty in prescribing inflow/
outflow boundary conditions in micro-haemodynamical
models (see Section B) requires additional steps, such
as network-scale simulations with simplified blood
rheology, to provide input data [2,23] (Figure 2c). For
cell-scale models to faithfully reproduce physiological
transport processes in the human placenta, multi-scale
biophysical and biochemical processes (including blood
coagulation, cell—cell and cell—surface interactions)

need to be incorporated without compromising compu-
tational efficiency. Also, longer simulations and larger
computational domains are needed to match the realistic
temporal and spatial scales over which biological pro-
cesses occur [39].

Consideration of interfacial features

Thus far, key interfacial micro-/nano-structures at the
maternal—fetal interface have been mostly neglected in
in vitro or in silico models. These include the microvilli on
the materno-placental trophoblast syncytium layer [24]
and the glycocalyx on the endothelium of fetal capil-
laries [25]. The influence of glycocalyx on the flow of
RBCs [41] and the transport of substances across the
placental endothelium and trophoblast syncytium re-
mains poorly understood [16]. Recent progress in
growing 3D ‘organoids’ from placental trophoblast cells
in vitro [42] opens further opportunities for character-
ising the maternal—fetal interface. With the increasing
availability of high-resolution imaging, e.g., transmission
electron microscopy, for the placenta [24], a future
challenge is to incorporate these interfacial features into
blood flow models. This goal may be achieved experi-
mentally by coating channels with cultured trophoblast
cells [27], endothelial cells [43] or polymer brushes
[44]. However, the disparity in scales, ranging from
nanometres for glycoproteins to micrometres for RBCs,
hinders the physiologically realistic representation of
these features in numerical models.

Scaling up models and simulations

Owing to strong spatial heterogeneity arising from both
topological and micro-haemodynamical variations, any
microscopic model is likely to be computationally pro-
hibitive at the placental tissue scale. Tractable testing of
physiologically relevant hypotheses could be enabled
through a combination of optimised computational stra-
tegies and mathematical model-reduction approaches.

Code accessibility and scalability

Large-scale parallel simulators of cellular haemody-
namics in complex and sparse geometries are primarily
based on flow solvers using the lattice-Boltzmann
method [2,40] or dissipative particle dynamics [39,45].
Several computational models are available as open-
source research software, such as HemelLB [2] and
Mirheo [45], which demonstrate excellent scalability
and can run on hundreds to thousands of distributed
computational (CPU) nodes. Optimisation of the load
balancing of computational nodes improves code scal-
ability in simulations of heterogeneous microvascular
networks [46]. Nevertheless, the computational effi-
ciency of conventional spatial decomposition schemes is
limited by the CPU node communication rate, and ef-
forts have been focused on developing a hybrid paral-
lelism that combines temporal decomposition
(computed via GPU) with spatial decomposition [39].
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However, even optimised microscopic flow and transport
simulators require extensive model parametrisation,
uncertainty quantification and validation against tissue-
and organ-scale observations, which are not feasible
without systematic model-reduction approaches.

Reduced-order modelling and upscaling

A possible solution to harnessing the computational
complexity of placental micro-haemodynamics is to
implement reduced-order modelling or upscaling tech-
niques. A classic example in which experimental data
have been used to inform a reduced-order model is the
work of A. R. Pries and T. W. Secomb, who established a
set of empirical laws for haematocrit transport through
capillary networks [25]. This work is widely used but
may not be applicable to maternal flow in the IVS.
Upscaling techniques for continuum models over
microstructured tissues have been used extensively to
investigate tissue properties, often drawing on theoret-
ical developments driven by geophysical applications.
These techniques (reviewed by Ref. [47]) largely hinge
upon identifying a representative volume element (RVE). In
a popular method of upscaling, asymptotic homogeni-
sation, RVEs are often assumed to be organised in a
periodic array. For a highly heterogeneous and disor-
dered tissue of the human placenta, the assumption of
periodicity does not apply, and identifying the features
of an RVE is an open and contentious question.
Furthermore, spatial scale separation is typically less
strong in biological tissues (tens of microns to milli-
metres) compared to geophysical subsurface applica-
tions (nanometres to kilometres). This ultimately
restricts the applicability of many approximation
methods, meaning new approaches, such as stochastic
homogenisation [48] or generalised multiscale finite
element methods [49], must be used to construct
upscaled models of the placental flow and transport.

Alternatively, network models are commonly employed
to investigate the effects of spatial disorder on flow and
transport in complex media [34]. Spectral graph theory
(which decomposes complex networks according to
their topology and physical properties) has shown
promise for effective model-reduction and characteri-
sation of heterogeneity in lung airways [50], an approach
that could be adapted for the human placenta. However,
any possible network model for the placenta will be
fundamentally different to those already constructed for
other organs (such as brain or tumour vasculature
[22,23]) due to differences in network topology. Spe-
cifically, developing a coupled model for two distinct
placental circulations, the maternal pore network and
the fetal vascular network, remains an open challenge.
More work is also needed to understand fundamental
mechanisms for suspension flows in disordered geome-
tries, such as non-local transport effects [49] and
haematocrit heterogeneity [23], in order to inform the
development of tissue- and organ-scale models.

Micro-haemodynamics of the human placenta Zhou et al. 7

Emerging diagnostics and therapies for
precision obstetrics medicine

Advances in multiscale ex vivo imaging,  vitro and in
sitlico biomimetic micro-haemodynamical modelling
enable more mechanistic understanding and interpre-
tation of clinical imaging (such as Doppler sonography
and MRI). Likewise, ‘reverse engineering’ the funda-
mental building blocks of the human placental micro-
circulation can help devise new therapeutic strategies
in pregnancy complications and optimise the design of
adequate biomimetic replicas for clinical applications.

In vivo imaging and management of placental
haemodynamics

Doppler ultrasound has been used in maternity care for
more than three decades following the recognition that
the umbilical artery Doppler waveform is different in
pregnancies affected by placental dysfunction [14].
Until recently, all assessments have been made on the
basis of the relative peak of velocity compared to dia-
stolic velocity to create either a pulsatility index or resis-
tance index with gestationally dependent reference ranges
created from low-risk pregnancies. Intra-placental
Doppler may also have a role in delineating normal
placentas from those with dysfunction [14], but existing
resolution constraints potentially limit the applicability
of this technique in the clinical assessment of placental
micro-rheology. Furthermore, the impact of local
haematocrit fluctuations in a highly irregular placental
IVS, spiral uterine and helical umbilical arteries on the
Doppler signal remains to be quantified. There has also
been a growing recognition that improving the under-
standing of why and how Doppler waveforms change will
lead to improved risk stratification and more individu-
alised clinical care [14,51].

Placental magnetic resonance imaging (MRI) offers the
potential to expand /# vivo imaging of the placenta
beyond what Doppler ultrasound can offer by providing
information on flow at a microstructural level [9] and
oxygenation status, using functional MRI (e.g., blood-
oxygenation-level-dependent (BOLD) 75* imaging
sequence) [52]. However, the spatial resolution of these
modalities, which is generally in the millimetric range
[18], is still a limiting factor. Structural MRI 77 and 7%
maps have shown some promise in the early diagnosis of
placental dysfunction, but the relationship of data ob-
tained to the placental micro-haemodynamics and
postnatal histopathological findings has yet to be fully
determined.

Little is known about placental micro-haemodynamics
in early pregnancy. For example, one important open
question is the interaction of blood flow with porous
trophoblast plugs in the spiral arteries that limit the
maternal placental circulation until the second
trimester, and whose abnormal dynamics are associated
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with pre-eclampsia and other pathologies [14]. Like-
wise, placenta-associated bleeding and abruption are
challenging to diagnose and characterise pathophysio-
logically [53].

Better understanding of how micro-haemodynamics and
biochemistry interact with complex utero-placental ge-
ometries will also inform future therapies and facilitate
precision-medicine interventions. In particular, the early
establishment of normal and abnormal placental circu-
lation in pregnancy (aided by upscaled biomimetic
sifico and microfluidic models) could enable differential
therapies to be administered to reduce the severity of
FGR and associated pregnancy pathologies [3].

Artificial placentas for neonatal support

With the number of pre-term births increasing, consid-
erable attention has been paid to develop critical life-
support technology for neonates. In the event of a pre-
term birth, the lungs are only partially developed and
cannot meet oxygenation needs provided by the
placenta  utero, often leading to respiratory insuffi-
ciency and other conditions that increase neonatal
morbidity and mortality.

Several technologies have been developed that aim to
mimic the support received by the fetus inside the
mother’s body, either fully or partially. One class of
technology, termed as arvificial womb, aims to replicate
the oxygenation, thermal-control and nutrient-supply
functions of the human placenta [54]. An artificial
womb is important for pre-term neonates bordering on
viability who require a stable extra-uterine environ-
ment. Pre-term lamb fetuses (105—130 days gesta-
tional age, GA) were maintained in a biobag consisting
of artificial amniotic fluid and catheters that connected
the fetus to an external pumpless oxygenator, nutrient
supply and waste removal device through the umbilical
vessels. The device was able to sustain the fetuses
physiologically for up to four weeks. Even smaller pre-
term lambs (GA 95 days) were sustained for up to five
days and shown to have a stable and normal stage of
development [55].

The other class of technology known as artificial placenta
is for more mature pre-term neonates, where respiratory
distress is common. In this scenario, oxygenation sup-
port in a biomimetic fashion is desired in order to avoid
the complications associated with mechanical ventila-
tion. Artificial placental devices consisting of hollow-
fiber membrane oxygenators have maintained pre-term
lambs (GA 118 days) through a venous—venous
connection for over ten days, which enabled the lungs
to develop in a normal manner and protected them from
injuries associated with ventilation support. Here, a
pump is often used to extract the blood and perfuse the
oxygenator. In order to extend this technology to smaller
neonates, with smaller size and blood volume,

alternative microfluidic designs have been considered
[31,56] (Figure 3e). The advantage of a microfluidic
device is that it can be precisely designed to operate not
only in a pumpless manner but also to avoid stagnation
zones and high-shear regions, where thrombotic re-
actions can occur. Very small channel dimensions similar
to blood capillaries in the lungs or the placenta, as well
as extremely thin gas perfusion membranes, are possible
in the microfluidic format. Recently, this format has
rescued piglets of the size and blood volume of human
neonates from respiratory distress [57], consistently
increasing oxygen saturation in the animal from 50—60%
to above 80%. This proof of concept in animal models,
combined with recent progress in biomimetic i vitro
and # silico models, shows promise for the translation of
artificial placenta technology into human trials and for
eventual approval and use in human pre-term neonates.

Concluding remarks

Modelling of flow and transport in the human placenta
shares some common challenges with other complex
biological systems, which include robust extraction and
characterisation of the microstructure and identifying
appropriate boundary conditions. However, the inter-
twining of the porous IVS with the irregular feto-
placental villous capillary network distinguishes the
human placenta not only from other exchange organs but
also from the placentas of other non-primate species.

Future progress in the field is expected by a combination
of well-controlled biomimetic microfluidics, hybrid and
highly parallelised computational micro-haemodynamics
and systematic upscaling of these high-resolution
models to the organ or device scale.

In addition to the important biomedical and clinical
applications in fetal and neonatal medicine, a deeper
understanding of suspension flows in complex geome-
tries will address many fundamental questions and
stimulate development in other areas of science and
engineering.
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